Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 155(8): 084801, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34470363

RESUMEN

This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear-electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an "open teamware" model and an increasingly modular design.

2.
Org Biomol Chem ; 18(40): 8186-8191, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33026395

RESUMEN

Homogeneous cationic gold(i) catalysis emerged as a preferred avenue for the activation of alkenes and alkynes towards reactions with weak nucleophiles, especially in cyclization reactions. Here we report an intramolecular carboalkoxylation reaction of electron-rich benzyl ethers of 2-ethynylaryl phenols catalysed by a digold(i)-NHC complex. The reaction proceeds efficiently with low catalyst loading and the resulting 2,3-disubstituted benzofurans form in moderate to good yields. Based on the results of a cross-over experiment, spectroscopic data, and DFT calculations, we propose a mechanism that accounts for the observed chemo- and regioselectivity.

3.
J Chem Phys ; 149(15): 154305, 2018 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-30342450

RESUMEN

New photoresists are needed to advance extreme ultraviolet (EUV) lithography. The tailored design of efficient photoresists is enabled by a fundamental understanding of EUV induced chemistry. Processes that occur in the resist film after absorption of an EUV photon are discussed, and a new approach to study these processes on a fundamental level is described. The processes of photoabsorption, electron emission, and molecular fragmentation were studied experimentally in the gas-phase on analogs of the monomer units employed in chemically amplified EUV resists. To demonstrate the dependence of the EUV absorption cross section on selective light harvesting substituents, halogenated methylphenols were characterized employing the following techniques. Photoelectron spectroscopy was utilized to investigate kinetic energies and yield of electrons emitted by a molecule. The emission of Auger electrons was detected following photoionization in the case of iodo-methylphenol. Mass-spectrometry was used to deduce the molecular fragmentation pathways following electron emission and atomic relaxation. To gain insight on the interaction of emitted electrons with neutral molecules in a condensed film, the fragmentation pattern of neutral gas-phase molecules, interacting with an electron beam, was studied and observed to be similar to EUV photon fragmentation. Below the ionization threshold, electrons were confirmed to dissociate iodo-methylphenol by resonant electron attachment.

4.
J Chem Phys ; 146(16): 164106, 2017 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-28456207

RESUMEN

In order to increase computation power and efficiency, the semiconductor industry continually strives to reduce the size of features written using lithographic techniques. The planned switch to a shorter wavelength extreme ultraviolet (EUV) source presents a challenge for the associated photoresists, which in their current manifestation show much poorer photoabsorption cross sections for the same dose. Here we consider the critical role that an inner-shell electronic structure might play in enhancing photoabsorption cross sections, which one can control by the choice of substituent elements in the photoresist. In order to increase the EUV sensitivity of current photoresists, it is critical to consider the inner-shell atomic structure of the elements that compose the materials. We validate this hypothesis using a series of halogenated organic molecules, which all have similar valence structures, but differ in the character of their semi-core and deep valence levels. Using various implementations of time-dependent density functional theory, the absorption cross sections are computed for the model systems of CH3X, X = H, OH, F, Cl, Br, I, as well as a representative polymer fragment: 2-methyl-phenol and its halogenated analogues. Iodine has a particularly high cross section in the EUV range, which is due to delayed absorption by its 4d electrons. The computational results are compared to standard database values and experimental data when available. Generally we find that the states that dominate the EUV oscillator strength are generated by excitations of deep valence or semi-core electrons, which are primarily atomic-like and relatively insensitive to the specific molecular structure.

5.
Science ; 356(6333): 54-59, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28386006

RESUMEN

The ultrafast light-activated electrocyclic ring-opening reaction of 1,3-cyclohexadiene is a fundamental prototype of photochemical pericyclic reactions. Generally, these reactions are thought to proceed through an intermediate excited-state minimum (the so-called pericyclic minimum), which leads to isomerization via nonadiabatic relaxation to the ground state of the photoproduct. Here, we used femtosecond (fs) soft x-ray spectroscopy near the carbon K-edge (~284 electron volts) on a tabletop apparatus to directly reveal the valence electronic structure of this transient intermediate state. The core-to-valence spectroscopic signature of the pericyclic minimum observed in the experiment was characterized, in combination with time-dependent density functional theory calculations, to reveal overlap and mixing of the frontier valence orbital energy levels. We show that this transient valence electronic structure arises within 60 ± 20 fs after ultraviolet photoexcitation and decays with a time constant of 110 ± 60 fs.

6.
J Chem Phys ; 146(4): 044111, 2017 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-28147535

RESUMEN

Simulations of the n = 2 absorption spectra of HeN (N = 70, 150, 231, 300) clusters are reported, with nuclear configurations sampled by path integral molecular dynamics. The electronic structure is treated by a new approach, ALMO-CIS+CT, which is a formulation of configuration interaction singles (CIS) based on absolutely localized molecular orbitals (ALMOs). The method generalizes the previously reported ALMO-CIS model [K. D. Closser et al. J. Chem. Theory Comput. 11, 5791 (2015)] to include spatially localized charge transfer (CT) effects. It is designed to recover large numbers of excited states in atomic and molecular clusters, such as the entire n = 2 Rydberg band in helium clusters. ALMO-CIS+CT is shown to recover most of the error caused by neglecting charge transfer in ALMO-CIS and has comparable accuracy to standard CIS for helium clusters. For the n = 2 band, CT stabilizes states towards the blue edge by up to 0.5 eV. ALMO-CIS+CT retains the formal cubic scaling of ALMO-CIS with respect to system size. With improvements to the implementation over that originally reported for ALMO-CIS, ALMO-CIS+CT is able to treat helium clusters with hundreds of atoms using modest computing resources. A detailed simulation of the absorption spectra associated with the 2s and 2p bands of helium clusters up to 300 atoms is reported, using path integral molecular dynamics with a spherical boundary condition to generate atomic configurations at 3 K. The main features of experimentally reported fluorescence excitation spectra for helium clusters are reproduced.

7.
J Chem Phys ; 145(23): 234313, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-28010094

RESUMEN

Femtosecond extreme ultraviolet transient absorption spectroscopy is used to explore strong-field ionization induced dynamics in selenophene (C4H4Se). The dynamics are monitored in real-time from the viewpoint of the Se atom by recording the temporal evolution of element-specific spectral features near the Se 3d inner-shell absorption edge (∼58 eV). The interpretation of the experimental results is supported by first-principles time-dependent density functional theory calculations. The experiments simultaneously capture the instantaneous population of stable molecular ions, the emergence and decay of excited cation states, and the appearance of atomic fragments. The experiments reveal, in particular, insight into the strong-field induced ring-opening dynamics in the selenophene cation, which are traced by the emergence of non-cyclic molecules as well as the liberation of Se+ ions within an overall time scale of approximately 170 fs. We propose that both products may be associated with dynamics on the same electronic surfaces but with different degrees of vibrational excitation. The time-dependent inner-shell absorption features provide direct evidence for a complex relaxation mechanism that may be approximated by a two-step model, whereby the initially prepared, excited cyclic cation decays within τ1 = 80 ± 30 fs into a transient molecular species, which then gives rise to the emergence of bare Se+ and ring-open cations within an additional τ2 = 80 ± 30 fs. The combined experimental and theoretical results suggest a close relationship between σ* excited cation states and the observed ring-opening reactions. The findings demonstrate that the combination of femtosecond time-resolved core-level spectroscopy with ab initio estimates of spectroscopic signatures provide new insights into complex, ultrafast photochemical reactions such as ring-opening dynamics in organic molecules in real-time and with simultaneous sensitivity for electronic and structural rearrangements.

8.
J Chem Theory Comput ; 11(12): 5791-803, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26609558

RESUMEN

We develop a local excited-state method, based on the configuration interaction singles (CIS) wave function, for large atomic and molecular clusters. This method exploits the properties of absolutely localized molecular orbitals (ALMOs), which strictly limits the total number of excitations, and results in formal scaling with the third power of the system size for computing the full spectrum of ALMO-CIS excited states. The derivation of the equations and design of the algorithm are discussed in detail, with particular emphasis on the computational scaling. Clusters containing ∼500 atoms were used in evaluating the scaling, which agrees with the theoretical predictions, and the accuracy of the method is evaluated with respect to standard CIS. A pioneering application to the size dependence of the helium cluster spectrum is also presented for clusters of 25-231 atoms, the largest of which results in the computation of 2310 excited states per sampled cluster geometry.

9.
J Chem Phys ; 140(13): 134306, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24712792

RESUMEN

The dynamics resulting from electronic excitations of helium clusters were explored using ab initio molecular dynamics. The simulations were performed with configuration interaction singles and adiabatic classical dynamics coupled to a state-following algorithm. 100 different configurations of He7 were excited into the 2s and 2p manifold for a total of 2800 trajectories. While the most common outcome (90%) was complete fragmentation to 6 ground state atoms and 1 excited state atom, 3% of trajectories yielded bound, He2(*), and <0.5% yielded an excited helium trimer. The nature of the dynamics, kinetic energy release, and connections to experiments are discussed.

10.
J Phys Chem A ; 114(31): 8023-32, 2010 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-20684573

RESUMEN

The vertical excitation energies of small helium clusters, He(7) and He(25), have been calculated using configuration interaction singles, and the character of the excited states was determined using attachment/detachment density analysis. It was found that in the n = 2 manifold the excitations could be interpreted as superpositions of atomic states, with excitations on the surface of the clusters being lower in energy than those in the bulk. For the n = 2 excited states with significant density on the interior of the cluster, mixing with the atomic n = 3 states resulted in lower excitation energies. For the n = 3 states the spatial extent of the excited-state density can be much larger than the size of the cluster, making analysis of the states more difficult and highly dependent on the internuclear distance. Introducing disorder into the clusters results in some localization of the excited states, although highly delocalized states are always observed in these small clusters. In addition, experimental results for small clusters are interpreted in terms of these findings.

11.
J Org Chem ; 74(10): 3680-8, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19361191

RESUMEN

We studied the scope and limitations of a tandem intramolecular Nicholas/Pauson-Khand strategy for the synthesis of tricyclic oxygen- and nitrogen-containing heterocycles. This methodology enables conversion of simple acyclic starting materials into a series of previously unknown heterocyclic architectures. For the preparation of cyclic ethers (Z = O), tricyclic [5,6,5]- through [5,9,5]-systems (m = 1, n = 1-4) are available with the [5,7,5]- and [5,8,5]-systems amenable to quick and efficient synthesis. Tricyclic [5,7,5]- and [5,8,5]-amine-containing (Z = NTs) heterocycles can be successfully prepared. Attempts to make larger ring systems (Z = O, m = 2; Z = O, n = 5; or Z = NTs, n = 4-5) or prepare lactones via Nicholas reactions with carboxylic acid nucleophiles (available via oxidation of alcohol nucleophiles, Z = O) result in decomposition or dimerization. The latter process enables formation of 14-, 16-, and 18-membered ring diolides when using carboxylic acid nucleophiles. We also investigated the use of chiral amine promoters in the Pauson-Khand step but found no asymmetric induction.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/síntesis química , Nitrógeno/química , Oxígeno/química , Dimerización , Compuestos Heterocíclicos con 3 Anillos/química , Estereoisomerismo , Especificidad por Sustrato
12.
J Phys Chem A ; 112(6): 1238-44, 2008 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-18211039

RESUMEN

We have observed OH radical products from the unimolecular dissociation of ethyl hydroperoxide (CH3-CH2OOH) excited to 5nuOH and have collected an action spectrum from 15,600 to 16,800 cm(-1) and an OH product state distribution at the maximum (16,119 cm(-1)). We use a vibrational-torsional model to simulate spectra in the 5nuOH region for the trans and gauche conformers. A combination of the two simulated spectra resembles the experimental action spectrum, provided that the trans conformer is assumed to dominate at room temperature. Energy disposal in the OH fragment yields an upper limit for the O-O bond dissociation energy at D0 < 44 kcal mol(-1).

13.
J Org Chem ; 70(22): 9088-91, 2005 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-16238362

RESUMEN

[reaction: see text] We have developed a new strategy for the preparation of diolides using a cascade of Nicholas reactions. The carboxylic acid nucleophiles in these reactions are virtually unstudied participants in transformations of this type. Using this methodology, a 16-membered cobalt-complexed cyclic diyne is available in 28% yield over eight steps (an average of 85% per step). We can also easily access the uncomplexed diolide in one additional step.


Asunto(s)
Ácidos Carboxílicos/química , Sesquiterpenos/química , Ciclización , Hidrógeno/química , Lactonas/química , Estructura Molecular , Sesquiterpenos/síntesis química , Estereoisomerismo
14.
Org Lett ; 6(26): 4949-52, 2004 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-15606107

RESUMEN

[reaction: see text] Simple acyclic enynes can be easily converted into tricyclic ethers upon treatment with Co2(CO)8 followed by Nicholas and Pauson-Khand reactions. Tricyclic [5,8,5]- and [5,7,5]-systems can be prepared in high overall yields in only seven synthetic steps.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...